#include <R3BHuberRegression.h>
|
| | HuberRegressor (Config config=Config{}, std::unique_ptr< ROOT::Math::Minimizer > minimizer=std::unique_ptr< ROOT::Math::Minimizer >{ ROOT::Math::Factory::CreateMinimizer("Minuit2") }) |
| auto | train_from_data (const std::vector< double > &x_vals, const std::vector< double > &y_vals) -> bool |
| auto | calculate_p_value (const std::vector< double > &y_errs, double scale=1.) -> double |
| void | reset_parameters () |
| auto | get_config_ref () -> Config & |
| auto | get_result () const -> const Result & |
| auto | check_outlier (double x_val, double y_val) const -> std::pair< bool, double > |
| auto | check_outlier (double x_val, double y_val, const std::pair< double, double > &weight_bias) const -> std::pair< bool, double > |
|
| static constexpr auto | n_pars = 2 |
Definition at line 36 of file R3BHuberRegression.h.
◆ Config
◆ HuberRegressor()
| R3B::HuberRegressor::HuberRegressor |
( |
Config | config = Config{}, |
|
|
std::unique_ptr< ROOT::Math::Minimizer > | minimizer = std::unique_ptr<ROOT::Math::Minimizer>{ ROOT::Math::Factory::CreateMinimizer("Minuit2") } ) |
|
explicit |
◆ calculate_loss()
| auto R3B::HuberRegressor::calculate_loss |
( |
const double * | raw_pars | ) |
-> double |
|
private |
◆ calculate_p_value()
| auto R3B::HuberRegressor::calculate_p_value |
( |
const std::vector< double > & | y_errs, |
|
|
double | scale = 1. ) -> double |
◆ check_outlier() [1/2]
| auto R3B::HuberRegressor::check_outlier |
( |
double | x_val, |
|
|
double | y_val ) const -> std::pair< bool, double > |
|
nodiscard |
◆ check_outlier() [2/2]
| auto R3B::HuberRegressor::check_outlier |
( |
double | x_val, |
|
|
double | y_val, |
|
|
const std::pair< double, double > & | weight_bias ) const -> std::pair< bool, double > |
|
nodiscard |
◆ get_config_ref()
| auto R3B::HuberRegressor::get_config_ref |
( |
| ) |
-> Config & |
|
inline |
◆ get_result()
| auto R3B::HuberRegressor::get_result |
( |
| ) |
const -> const Result & |
|
inlinenodiscard |
◆ reset_parameters()
| void R3B::HuberRegressor::reset_parameters |
( |
| ) |
|
◆ set_par_errors()
| void R3B::HuberRegressor::set_par_errors |
( |
const double * | raw_error_ptr | ) |
|
|
private |
◆ set_par_values()
| void R3B::HuberRegressor::set_par_values |
( |
const double * | raw_pars_ptr | ) |
|
|
private |
◆ train_from_data()
| auto R3B::HuberRegressor::train_from_data |
( |
const std::vector< double > & | x_vals, |
|
|
const std::vector< double > & | y_vals ) -> bool |
◆ config_
| Config R3B::HuberRegressor::config_ |
|
private |
◆ DEFAULT_SIGMA
| auto R3B::HuberRegressor::DEFAULT_SIGMA = 20 |
|
staticconstexpr |
◆ minimizer_
| std::unique_ptr<ROOT::Math::Minimizer> R3B::HuberRegressor::minimizer_ |
|
private |
◆ n_pars
| auto R3B::HuberRegressor::n_pars = 2 |
|
staticconstexprprivate |
◆ result_
| Result R3B::HuberRegressor::result_ |
|
private |
◆ sigma_
◆ x_vals_
| std::span<const double> R3B::HuberRegressor::x_vals_ |
|
private |
◆ y_vals_
| std::span<const double> R3B::HuberRegressor::y_vals_ |
|
private |
The documentation for this class was generated from the following files: